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ABSTRACT
The task of a music recommender system is to predict what music item a particular user would like to
listen to next. This position paper discusses the main challenges of the music preference prediction
task: the lack of information on the many contextual factors influencing a user’s music preferences in
existing open datasets, the lack of clarity of what the right choice of music is and whether a right
choice exists at all; the multitude of criteria (beyond accuracy) that have to be met for a “good” music
item recommendation; and the need for explanations on relationships to identify (and potentially
counteract) unwanted biases in recommendation approaches.
The paper substantiates the position that the confluence of theoretical modeling (which seeks

to explain behaviors) and algorithmic modeling (which seeks to predict behaviors) seems to be an
effective avenue to take in computational modeling for music recommender systems.
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INTRODUCTION
Before the era of the Internet, access to music content (e.g., music recordings) was restricted to
local availability of their physical representations (e.g., vinyl). Thereby, the selection and aggregation
of content had traditionally been exposed to human control [25]. For instance, a small group of
Artist&Repertoire managers working for the major music labels scouted new artists and developed
them commercially.

Nowadays,—owing to the development of the Social Web that allows for easy distribution of user-
generated content—the intermediary level of experts (e.g., the Artist&Repertoire managers at music
labels) that traditionally “prefiltered” content before it reached potential consumers is bypassed. This
results in the situation that users currently face: music content is abundantly available online and the
amount of overall available content increases tremendously on a daily basis.Examples of differences associated with music

items, users, and their consumption behaviour
include the following[34]:

• very low consumption time in the di-
mension of minutes, whereas a book or
a travel are consumed during days or
weeks;

• consumption in sequences (e.g.,
playlists);

• music often consumed passively (e.g.,
while jogging, travelling, working);

• consumption is highly driven by situa-
tional context;

• users are likely to appreciate the re-
recommendation of the same item while
a user is less likely to read the same news
article over and over again; and

• music evokes strong emotions.

Sidebar 1: The specialties of themusic
domain

However, the opportunity to access a large amount of content frequently leads to information
overload [8] or choice overload [19], because people do not find the content that they are interested in
or do not know what to choose. Assisting users in searching, sorting, and filtering the massive amount
of online content [24], recommender systems have become important tools in people’s everyday life
and do not only facilitate the interaction with music content [15], but also support versatile activities
such as shopping [26], consuming news [25], or finding persons for any kind of social matching [23].

Recommender systems are computer systems that provide suggestions for items that are deemed
interesting to a particular target user, assisting that particular user in various decision-making
processes (e.g., relating to what music to listen to) [27]. The general term used to denote to what the
system recommends to users is “item” [27]; in case of music recommender systems (MRS) it is the
music item (e.g., musical work, artist, genre).
There are universally valid principles for designing recommender systems, such as that a recom-

mender system typically consist of three key components (i.e., user, item, andmatchingmechanism) [3].
Still, a recommender system needs to be put into context because there are product- and sector-specific
characteristics that a recommender system needs to consider (be customized to) to provide useful and
effective recommendations for the specific type of item [27, 33]. Sidebar 1 presents the specialties of
the music domain compared to other domains deploying recommender systems.

RATIONALE
An ideal MRS proposes “the right music, to the right user, at the right moment” [21]. However, this is a
complex task because various factors influence a user’s music preferences in a given situation [6]. Many
studies have investigated the relationships between music preferences and various person-related
characteristics (e.g., demographics [17], personality traits [28], social influences [12]. Besides person-
related characteristics, also situation-related factors (e.g., temporal aspects [18], or weather [13])



influence a user’s music preferences. The task of an MRS is to predict what a particular user would
like to listen to next. Basically, there are two computational modeling approaches to build upon for
this music preference prediction task:

• Theoretical modeling seeks to explain users’ listening behavior. For advancing MRS, the first
step would be to observe a user’s listening behavior and perform analyses to explain where a
user’s listening behavior results from (e.g., from person-related characteristics or situational
factors, and from which of these in particular). Then, building on these findings (e.g., knowing
that Finnish listeners are more likely to prefer heavy metal than Italian listeners [30]), future
user models may be created for predictions.

• Algorithmic modeling seeks to predict users’ listening behavior. Algorithmic modeling may rely
on approaches that are capable of identifying listening patterns within a user’s listening history
or across users without necessarily delivering descriptions that help explaining the relationships
of the identified patterns. For instance, approaches such as deep neural networks frequently
leave us with “black boxes” [20] because the resulting models are complex and frequently they
do not produce an intelligible description of the results produced in each case. Still, the resulting
models may be apt to deliver remarkably accurate predictions. In other words, algorithmic
modeling may recommend music to the user what he or she will indeed like in the very moment
without understanding whether it was indeed the “right” choice—and if—why it was “right”.

CHALLENGES
One challenge for music preference prediction is that it is (almost) impossible to say what is the right
choice for a particular user in the particular moment; it is typically a set of items that is right or okay.
Another challenge of algorithmic modeling is that—currently—we can only model based on data

that we have available. For MRS, several open datasets exist, such as the Million Song Dataset [10],
the LFM-1b dataset [29], or the recently released Music Streaming Sessions Dataset [14]. However,
there are many factors influencing a user’s music preferences for which we do not have (sufficient)
data available (yet) to exploit for algorithmic modeling. Theoretical modeling—thus, the “explaining
approach”—may help here to advance MRS. It is also a viable basis to provide an informed route what
kind of data should be collected so that algorithmic modeling may come into play here to use its
powerful mechanisms to exploit the additional data to make even better predictions.
A further challenge relates to evaluation of MRS: What does it mean if an MRS recommends a

music item to a user and the user indeed listens to the item? Potentially, it is the user’s most favorite
song and so the user enjoyed listening to it. Maybe, though, the user listens to the item because the
algorithm provided it as the next one to listen to in the playlist, but the user was distracted at the very
moment because of receiving a phone call (or was not present in the room for some minutes). In such



cases, the recommendation was maybe not a “bad” one because the user did not hear it anyways, but
was it a good prediction then?

With respect to biases as inherent in recommendation systems (e.g., the popularity bias phenome-
non [16] suggesting that over time the most popular music items tend to get more and more attention,
while music items in the long tail get less and less attention [22]), the ability to understand and
explain models seems to be a crucial prerequisite to uncover such bias and develop and take effective
measures to counteract unwanted bias.

PREVIOUS AND ONGOING RESEARCH, AND INTERESTS
A major part of my previous and ongoing research is aimed at integrating contextual information into
(user) modeling. Basically, my work on context modeling takes a conceptual viewpoint (e.g., [2, 4]).
It points towards the various potentially relevant contextual factors that we tend to “forget” in
modeling (for various reasons such as, for instance, the non-availability of useful datasets including
such contextual information).
With the main objective at improving MRS, some part of my research on MRS is geared towards

identifying relationships between various aspects (such as age [32], user connections [5, 7], user
country [6], real-world events [35], mainstreaminess [31]) and music preferences or listening behavior.
Findings are then used to improve MRS performance (for instance in [6, 31, 32]).

To a considerable extent, ideas on the (contextual) components that could improve MRS are based
on literature from various disciplines such as cognitive science (e.g., [36]), social psychology (e.g., [11]),
and computer science [21]. In addition, ideas emanate from my own experience of many years in the
music domain—which is a significant knowledge source that is not available to every researcher.

PROSPECTS
Overall, recommender systems research has predominantly focused on improving the prediction accu-
racy of algorithms based on existing datasets (reflecting users’ historic item ratings or consumption
behavior) [9]. However, to date, comprehensive contextual information about users and the specific
situational settings in which those consume the items is rarely available in existing datasets [1]—and
is especially true for music-related datasets.

The confluence of theoretical and algorithmic modeling seems to be an effective avenue to take in
computational modeling for MRS.ACKNOWLEDGMENTS
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