

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

A COMPARISON AND VALIDATION OF 13 CONTEXT META-MODELS Christine Bauer

20th European Conference on Information System, Barcelona, Spain, June 11-13, 2012

Significant element in pervasive computing is known as `context'

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

13/05/16

EQUIS

Motivation

Context is multifarious and complex

→ there is a need for systematization!

Context meta-model is

- generic description of the context world on an abstract level
- <u>not</u> targeted towards a particular system or application

Various context meta-models exist and the community could not yet agree on a single one.

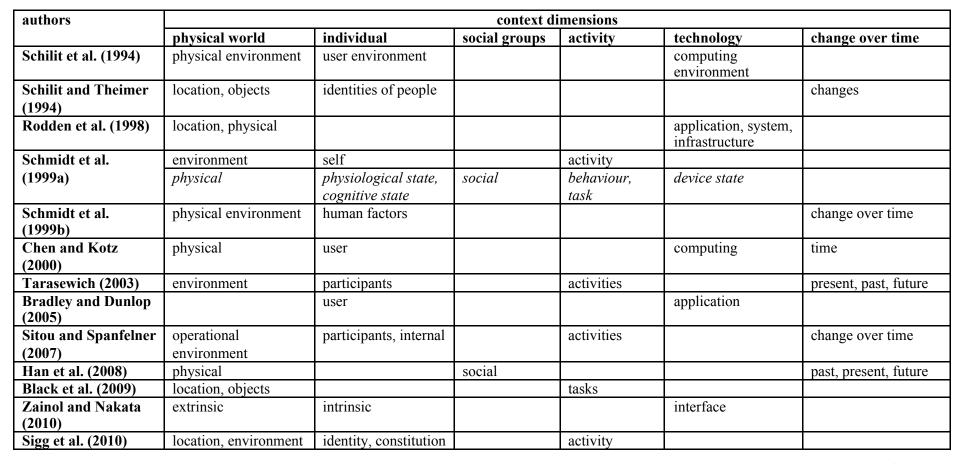
Context meta-models with V high level of abstraction

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

Chen and Kotz (2000)

- physical environment
- user environment
- computing environment
- time

Black et al. (2009)


- task
- location
- objects
- contextual world

Comparison of 13 Context Meta-Models

13/05/16

AND BUSINESS

Model comparison approach

inductive approach

grouping on top level of abstraction

- identical names
- review of other top level variables for semantic conformity
 → led to reduction of groups

second level of abstraction

used to ensure semantic conformity

brainstorming and group discussions

• \rightarrow refinement of grouping structure

final step

names were given to resulting groupings → `context dimensions'

13 Context Meta-Models show similarities, but also point to distinct concepts

authors	context dimensions					
	physical world	individual	social groups	activity	technology	change over time
Schilit et al. (1994)	physical environment	user environment			computing environment	
Schilit and Theimer (1994)	location, objects	identities of people				changes
Rodden et al. (1998)	location, physical				application, system, infrastructure	
Schmidt et al.	environment	self		activity		
(1999a)	physical	physiological state, cognitive state	social	behaviour, task	device state	
Schmidt et al. (1999b)	physical environment	human factors				change over time
Chen and Kotz (2000)	physical	user			computing	time
Tarasewich (2003)	environment	participants		activities		present, past, future
Bradley and Dunlop (2005)		user			application	
Sitou and Spanfelner (2007)	operational environment	participants, internal		activities		change over time
Han et al. (2008)	physical		social			past, present, future
Black et al. (2009)	location, objects			tasks		
Zainol and Nakata (2010)	extrinsic	intrinsic			interface	
Sigg et al. (2010)	location, environment	identity, constitution		activity		

Validation approach

empirical approach

sample

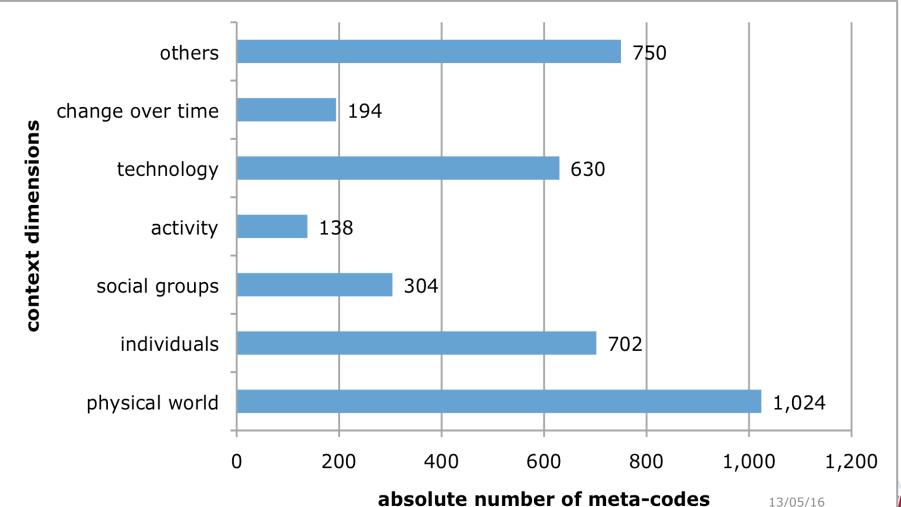
- all full-length articles of the IEEE Pervasive Computing Magazine, from 2005 through to the articles available in June 2011
- 297 articles

coding

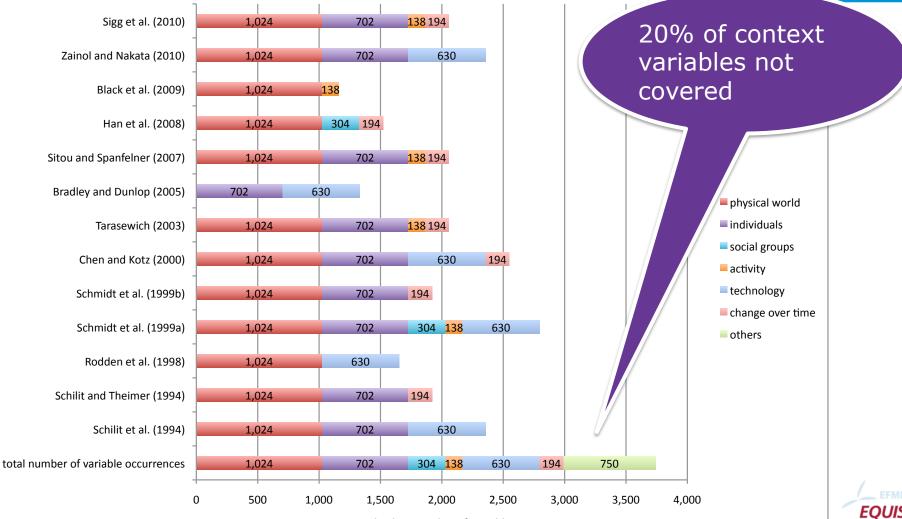
- (1) explicitly stated context variables
- (2) implicitly stated context variables

total of 10,498 variables (9,867 explicit, 631 implicit)

'word stemming' procedure


in 3,742 distinct context variables (meta-codes)

allocation of each meta-codes to corresponding context dimension



Context dimension richness: Number of meta-codes describing the context dimensions

IS

Number of variables per context dimension covered by context meta-models

absolute number of variables

Interesting items that are not covered by existing meta-models

refer to abstract, non-tangible concepts such as:

• e.g., confidentiality, ownership, risk, threat, control, cost, easiness, simplicity, distraction, or usefulness

refer to characteristics and quality aspects such as:

 e.g., feasibility, plausibility, efficiency, accuracy, precision, obtrusiveness, correctness, or constrainedness

items related to information and content

• e.g., news, recommendations, content types

Take away message

20% of context variables could <u>not</u> be clearly attributed to any context meta-model.

 Current systematization of the complex concept of context <u>not</u> sufficient.

Research practice in pervasive computing is far ahead of research dedicated to model development.

Clear indicator that the research community does <u>not</u> 'stick' to existing context meta-models when elaborating their research.

Institute for Management Information Systems

Department of Information Systems and Operations Augasse 2-6, UZA II, 1090 Vienna, Austria

Mag. DI Dr. Christine Bauer

T +43-1-313 36-4420 F +43-1-313 36 90-4420 chris.bauer@wu.ac.at www.wu.ac.at/ec

